State Monitoring and Early Fault Diagnosis of Rolling Bearing based on Wavelet Energy Entropy and LS-SVM

نویسندگان

  • Huanzhi Feng
  • Wei Liang
  • Laibin Zhang
چکیده

Rolling bearing is one of the most widely used elements in rotary machines. In this paper, a novel method is proposed to extract early fault features and diagnosis the early fault accurately for rolling bearing. Wavelet Energy Entropy is introduced as a feature parameter for bearing state monitoring and least square support vector machine (LS-SVM) is used for early fault diagnosis. In order to test the effectiveness of the method, a series of bearing whole life cycle test are performed on the accelerated bearing life tester. The result shows that Wavelet Energy Entropy has better performance and can forecast fault development earlier compared to conventional signal features. LS-SVM method can distinguish early bearing fault modes more accurate and faster than classic pattern recognition methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Fault diagnosis of gearboxes using LSSVM and WPT

This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...

متن کامل

Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm

This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Incipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator

This paper mainly deals with the issue of incipient fault diagnosis for rolling element bearing. Firstly, an envelope demodulation technique based on wavelet packet transform and energy operator is applied to extract the fault feature of vibration signal. Secondly, the relative spectral entropy of envelope spectrum and the gravity frequency are combined to construct two-dimensional features vec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013